메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sangjin Ahn (Kangwon National University) Woojin Shin (Gangwon Wildlife Medical Rescue Center) Yujin Han (Gangwon Wildlife Medical Rescue Center) Sohwon Bae (Kangwon National University) Cheaun Cho (Yanggu Long-tailed Goral and Muskdeer Center) Sooyoung Choi (Kangwon National University) Jong-Taek Kim (Kangwon National University)
저널정보
대한수의학회 Journal of Veterinary Science Journal of Veterinary Science 제24권 제4호
발행연도
2023.7
수록면
132 - 139 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background: Accurate diagnosis of diseases in animals is crucial for their treatment, and imaging evaluations such as radiographs, computed tomography (CT), and magnetic resonance imaging (MRI) are important tools for this purpose. However, a cross-sectional anatomical atlas of normal skeletal and internal organs of long-tailed gorals (Naemorhedus caudatus) has not yet been prepared for diagnosing their diseases.
Objectives: The objective of this study was to create an anatomical atlas of gorals using CT and MRI, which are imaging techniques that have not been extensively studied in this type of wild animal in Korea.
Methods: The researchers used CT and MRI to create an anatomical atlas of gorals, and selected 37 cross-sections from the head, thoracic, lumbar, and sacrum parts of gorals to produce an average cross-sectional anatomy atlas.
Results: This study successfully created an anatomical atlas of gorals using CT and MRI.
Conclusions: The atlas provides valuable information for the diagnosis of diseases in gorals, which can improve their treatment and welfare. The study highlights the importance of developing cross-sectional anatomical atlases of gorals to diagnose and treat their diseases effectively.

목차

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088229103