메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kwon Soon-Hwa (National Institute of Horticultural and Herbal Science) Ku Ki Bon (Department of Plant Resources and Environment Jeju National University) Tomar Vipin (Borlaug Institute for South Asia Ludhiana) Yildiz Mehtap (Department of Agricultural Biotechnology Faculty of Agriculture Van Yuzuncu Yil University) Kang Seok-Beom (National Institute of Horticultural and Herbal Science) Park Yosup (Department of Plant Resources and Environment Jeju National University) Park Won-Pyo (Department of Plant Resources and Environment Jeju National University) Han Gyung Deok (Department of Practical Arts Education Cheongju National University of Education)
저널정보
한국식물생명공학회 Plant Biotechnology Reports Plant Biotechnology Reports 제17권 제3호
발행연도
2023.6
수록면
415 - 420 (6page)
DOI
10.1007/s11816-023-00834-9

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
High-throughput phenotyping (HTP) enables breeders and researchers to have massive data sets accurately and objectively. It could be applied to plant breeding for screening stress tolerance and biodiversity among wild species in the gene bank, which can be a breakthrough in the phenotyping bottleneck. However, there are many factors to be considered. Thus, this study is designed to show an example of phenotyping traits using yield and image data in citrus using the Normalized Dif- ference Vegetation Index (NDVI) and Red, Green, and Blue (RGB) images. The results using image analysis showed that R2 in linear regression ranged from 0.79 to 0.91, depending on the methods which were used in the current study. However, the results from NDVI were proven to be false, unlike those of RGB images. This means that researchers and breeders must be very cautious when dealing with new technologies to avoid being misled to the wrong conclusion when they try to associate this data with genomic data.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0