메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이기표 (가천대학교 보건과학대학 의용생체공학과) 김영재 (가천대학교) 박동균 (가천대학교) 김재승 (가천대학교 길병원) 김광기 (가천대학교)
저널정보
차세대컨버전스정보서비스학회 차세대컨버전스정보서비스기술논문지 차세대컨버전스정보서비스기술논문지 제12권 제2호
발행연도
2023.4
수록면
215 - 223 (9page)
DOI
10.29056/jncist.2023.04.08

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 위내시경 검사 시에 보조 시스템으로 활용할 수 있도록 RetinaNet 네트워크를 사용하여 위내시경 영상에서의 위 병변의 위치를 자동으로 검출하는 모델을 개발하였다. 위암은 한국이나 일본 등의 아시아권에서 대부분 발생한다. 그러나 위내시경 검사는 동시에 진단이나 치료할 수 있으며, 조기 발견 시 치료 성공확률이 매우 높다. 그러나 실시간으로 진행되는 검사 특성상 숙련도나 경험이 결과에 영향을 주며, 업무의 피로도 상승과 집중력 하락으로 인해 검사의 정확도가 낮아지게 된다. RetinaNet 기반의 backbone 네트워크로 ResNet50, ResNet152, EfficientNetB0, EfficientNetB4 네트워크를 사용하여 학습한 모델의 검출 성능을 확인하고, 각 모델 간의 성능을 비교하였다. RetinaNet 기반 backbone 네트워크별 모델들의 평균 민감도(FP/images)는 ResNet50 73.72%(0.0489), ResNet152 78.26%(0.0458), EfficinetNetB0 79.67%(0.3268), EfficientNetB4 62.66%(0.0448)를 보였다. EfficientNetB0 네트워크는 가장 높은 민감도를 나타냈으나 FP/images가 매우 높게 나타나 두 성능치를 모두 만족하는 네트워크는 ResNet152였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0