메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Peter Somers (University of Stuttgart) Simon Holdenried-Krafft (University of Tübingen) Johannes Zahn (University of Tübingen) Johannes Schüle (University of Stuttgart) Carina Veil (University of Stuttgart) Niklas Harland (University Hospital of Tübingen) Simon Walz (University Hospital of Tübingen) Arnulf Stenzl (University Hospital of Tübingen) Oliver Sawodny (University of Stuttgart) Cristina Tarín (University of Stuttgart) Hendrik P. A. Lensch (University of Tübingen)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.13 No.2
발행연도
2023.5
수록면
141 - 151 (11page)
DOI
https://doi.org/10.1007/s13534-023-00261-3

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Monocular depth estimation from camera images is very important for surrounding scene evaluation in many technical fieldsfrom automotive to medicine. However, traditional triangulation methods using stereo cameras or multiple views with theassumption of a rigid environment are not applicable for endoscopic domains. Particularly in cystoscopies it is not possibleto produce ground truth depth information to directly train machine learning algorithms for using a monocular image directlyfor depth prediction. This work considers first creating a synthetic cystoscopic environment for initial encoding of depthinformation from synthetically rendered images. Next, the task of predicting pixel-wise depth values for real images is constrainedto a domain adaption between the synthetic and real image domains. This adaptation is done through added gatedresidual blocks in order to simplify the network task and maintain training stability during adversarial training. Training isdone on an internally collected cystoscopy dataset from human patients. The results after training demonstrate the ability topredict reasonable depth estimations from actual cystoscopic videos and added stability from using gated residual blocks isshown to prevent mode collapse during adversarial training.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0