메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wu Yu (Jiangsu Key Laboratory of Oral Diseases Jiangsu Province Engineering Research Center of Stomatological Translational Medicine Nanjing Medical University) Li Bing (Department of Oral Maxillofacial Surgery Affiliated Hospital of Stomatology Nanjing Medical University) Yu Dandan (Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University) Zhou Zhixuan (Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University) Shen Ming (Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University) Jiang Fei (Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University)
저널정보
한국조직공학과 재생의학회 조직공학과 재생의학 조직공학과 재생의학 제20권 제3호
발행연도
2023.6
수록면
473 - 488 (16page)
DOI
10.1007/s13770-023-00521-4

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Ever-growing tissue regeneration causes pressing need for large population of stem cells. However, extensive cell expansion eventually leads to impaired regenerative potentials. In this study, chromobox protein homolog 7 (CBX7) was overexpressed to rejuvenate late passage dental pulp stem cells (DPSCs-P9). Methods: The recruitment of copper ions (Cu2+)-activated hypoxia-inducible factor-1α (HIF-1α) to the CBX7 gene promoter was confirmed by chromatin immunoprecipitation assay. Functions subsequent to Cu2+-induced or recombinant overexpression of CBX7 on proliferation, multipotency, odontoblastic differentiation and angiogenesis were investigated in vitro, while murine subcutaneous transplantation model was used to further detect the effects of Cu2+-induced CBX7 overexpression in vivo. Results: Our data displayed that CBX7 overexpression maintain proliferation and multipotency of DPSCs-P9 almost as strong as those of DPSCs-P3. Both gene level of odontoblast-lineage markers and calcium precipitation were nearly the same between CBX7 overexpressed DPSCs-P9 and normal DPSCs-P3. Moreover, we also found upregulated expression of vascular endothelial growth factor in DPSCs-P9 with CBX7 overexpression, which increased the number of capillary-like structures and migrating co-cultured human umbilical vein endothelial cells as well. These findings indicate CBX7 as an effective factor to rejuvenate late passage stem cells insusceptible to cell expansion. Cu2+ has been proved to achieve CBX7 overexpression in DPSCs through the initiation of HIF-1α-CBX7 cascade. Under Cu2+ stimulation since P3, DPSCs-P9 exhibited ameliorated regenerative potential both in vitro and in vivo. Conclusion: Long-term stimulation of Cu2+ to overexpress CBX7 could be a new strategy to manufacture large population of self-renewing stem cells.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0