메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한예지 (다시재한방병원) 이보람 (한국한의학연구원 한의과학연구부)
저널정보
대한한방소아과학회 대한한방소아과학회지 대한한방소아과학회지 제37권 제2호
발행연도
2023.5
수록면
1 - 11 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives We aimed to compare the bone age (BA) estimation by a deep learning-based program and by a specialist in pediatrics of Korean medicine using the Tanner-Whitehouse 3 (TW3) technique for the cases of children who visited a Korean medicine hospital for growth, and to report the effect of Korean medicine treatment. Methods For three children who visited the Korean medicine hospital for growth, BA estimation by the deep learning program and by the specialist in pediatrics of Korean medicine using the TW3 technique was compared, and the time required for estimation was investigated. The change of height, BA, and predicted adult height (PAH) using deep learning program after Korean medicine treatment was observed. Results BA estimation of the left hand bone X-ray by the specialist using the TW3 technique showed a difference of -0.03 to +0.15 years from the estimation by the deep learning program. The mean estimation time was 5 minutes and 49 seconds per one for the specialist and 48 seconds for the deep learning program. During the treatment period, the height percentile and PAH estimated by deep learning program were increased after Korean medicine treatment compared to baseline while acceleration of BA was suppressed compared to chronological age. Conclusions BA estimation using the deep learning program and the TW3 technique showed a difference of less than 0.15 years, and in three cases of patients with growth as the chief complaint, Korean medicine treatment increased height percentile and PAH without accelerating BA maturation.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0