메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ying Zhang (Department of Pharmacy The First Afliated Hospital of Xi’an Jiaotong University) Hengyu Lei (Department of Pharmaceutics School of Pharmacy Xi’an Jiaotong University) Pengchong Wang (Department of Pharmacy Shaanxi Provincial People’s Hospital) Qinyuan Zhou (Department of Pharmaceutics School of Pharmacy Xi’an Jiaotong University) Jie Yu (Department of Pharmaceutics School of Pharmacy Xi’an Jiaotong University) Xue Leng (Department of Pharmaceutics School of Pharmacy Xi’an Jiaotong University) Ruirui Ma (Department of Pharmaceutics School of Pharmacy Xi’an Jiaotong University) Danyang Wang (Department of Pharmaceutics School of Pharmacy Xi’an Jiaotong University) Kai Dong (Department of Pharmaceutics School of Pharmacy Xi’an Jiaotong University) Jianfeng Xing (Department of Pharmaceutics School of Pharmacy Xi’an Jiaotong University) Yalin Dong (Department of Pharmacy The First Afliated Hospital of Xi’an Jiaotong University)
저널정보
한국생체재료학회 생체재료학회지 생체재료학회지 제27권
발행연도
2023.3
수록면
1,840 - 1,860 (21page)
DOI
https://doi.org/10.1186/s40824-023-00412-8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
BackgroundReactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. MethodsCeria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. ResultsPEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. ConclusionThis study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0