메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
송경진 (부산경상대학교 보건의료행정과) 이정은 (동의대학교)
저널정보
한일경상학회 한일경상논집 한일경상논집 제99권
발행연도
2023.5
수록면
51 - 62 (12page)
DOI
https://doi.org/10.46396/Kjem..99.4

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: The purpose of this paper is to define the information characteristics of management accounting systems into four categories: scope, timeliness, integration, and aggregation and to verify these characteristics through the dependent variable of MAP. Design/Methodology/Approach: Based on a literature review, survey data was collected from 224 management accounting practitioners and executives in small and medium-sized enterprises (SMEs) to validate the study. The logical validity was tested using regression analysis to examine the impact of management accounting system characteristics on managerial performance. Findings: The study results indicate that the characteristics of management accounting systems, using four information characteristics that include 17 items, have a significant impact on the degree of application of management accounting performance measurement. Scope, integration, and aggregation of information had significant impacts on the degree of application of management accounting performance measurement, while timeliness did not. Limitations: This study contributes to the development of management accounting system research, but it is limited to SMEs with a manufacturing focus and specific organizational environments and cultures. Therefore, further research in other organizational contexts and cultures is needed to validate and test this multidimensional tool. Implications: The information characteristics of management accounting systems identified in this study can be used to evaluate and improve performance measurement and benchmarking processes in SMEs.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0