메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Anindita Septiarini (Mulawarman University) Hamdani Hamdani (Mulawarman University) Emy Setyaningsih (Institut Sains & Teknologi AKPRIND) Eko Junirianto (Samarinda Polytechnic of Agriculture) Fitri Utaminingrum (Brawijaya University)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제29권 제2호
발행연도
2023.4
수록면
145 - 151 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: The optic disc is part of the retinal fundus image structure, which influences the extraction of glaucoma features. This study proposes a method that automatically segments the optic disc area in retinal fundus images using deep learningbased on a convolutional neural network (CNN). Methods: This study used private and public datasets containing retinalfundus images. The private dataset consisted of 350 images, while the public dataset was the Retinal Fundus Glaucoma Challenge(REFUGE). The proposed method was based on a CNN with a single-shot multibox detector (MobileNetV2) to formimages of the region-of-interest (ROI) using the original image resized into 640 × 640 input data. A pre-processing sequencewas then implemented, including augmentation, resizing, and normalization. Furthermore, a U-Net model was applied foroptic disc segmentation with 128 × 128 input data. Results: The proposed method was appropriately applied to the datasetsused, as shown by the values of the F1-score, dice score, and intersection over union of 0.9880, 0.9852, and 0.9763 for the privatedataset, respectively, and 0.9854, 0.9838 and 0.9712 for the REFUGE dataset. Conclusions: The optic disc area producedby the proposed method was similar to that identified by an ophthalmologist. Therefore, this method can be considered forimplementing automatic segmentation of the optic disc area.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0