메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ádám Szijártó (Eötvös Loránd University) Ellák Somfai (Eötvös Loránd University) András Lőrincz (Eötvös Loránd University)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제29권 제2호
발행연도
2023.4
수록면
112 - 119 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Melanoma is the deadliest form of skin cancer, but it can be fully cured through early detection and treatment in99% of cases. Our aim was to develop a non-invasive machine learning system that can predict the thickness of a melanomalesion, which is a proxy for tumor progression, through dermoscopic images. This method can serve as a valuable tool inidentifying urgent cases for treatment. Methods: A modern convolutional neural network architecture (EfficientNet) wasused to construct a model capable of classifying dermoscopic images of melanoma lesions into three distinct categories basedon thickness. We incorporated techniques to reduce the impact of an imbalanced training dataset, enhanced the generalizationcapacity of the model through image augmentation, and utilized five-fold cross-validation to produce more reliablemetrics. Results: Our method achieved 71% balanced accuracy for three-way classification when trained on a small publicdataset of 247 melanoma images. We also presented performance projections for larger training datasets. Conclusions: Ourmodel represents a new state-of-the-art method for classifying melanoma thicknesses. Performance can be further optimizedby expanding training datasets and utilizing model ensembles. We have shown that earlier claims of higher performance weremistaken due to data leakage during the evaluation process.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0