메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sapam Ningthemba Singh (National Institute of Technology Silchar) Ashish B. Deoghare (National Institute of Technology Silchar)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.29 No.6
발행연도
2023.6
수록면
1,563 - 1,585 (23page)
DOI
10.1007/s12540-022-01334-1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The tensile residual stress (TRS) generated due to large thermal gradient during the laser directed energy deposition (DED)and laser based powder bed fusion (PBF) is one of the major concerns. TRS leads to lower tensile, fatigue strength, distortion,reduced corrosion resistance, pores, etc. This concerns can be mitigated using laser shock peening (LSP). The basicprinciples and characteristics of each process i.e., PBF, DED, and LSP process, followed by popular metallic materials usedby PBF and LDED processes are discussed. The applications and drawbacks of each process are presented. This review paperdiscusses the recent progress on the LSP of laser based PBF/DED manufactured samples. Different approaches and challengesto hybrid AM + LSP are also presented in this paper i.e. LSP after every certain layer and LSP after the whole part ismanufactured. Even though the LSP after every certain layer offers deep CRS inside a part, it is a very time-consuming anddifficult process as constant removing, polishing, and resetting of the samples compromising the parts’ accuracy. Frequentchange of workstation between LSP and AM is also a major problem while benefits of LSP after the whole part is manufacturedare limited to the surface. The introduction of finer grains after LSP led to an increased microhardness and reducedpores thus increasing the tensile and fatigue life of the parts. The challenges and future scope are delineated.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0