메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이율희 (가천대학교 간호대학 간호학과) 김영재 (가천대학교 의과대학 의공학교실) 김광기 (가천대학교)
저널정보
대한의용생체공학회 의공학회지 의공학회지 제44권 제2호
발행연도
2023.4
수록면
118 - 124 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Many recent studies have reported that the quality of input learning data was vital to the detection of regions of interest. However, due to a lack of research on the quality of learning data on lesion detetcting using gas- troscopy, we aimed to quantify the impact of quality difference in endoscopic images to lesion detection models using Image Quality Assessment (IQA) algorithms. Through IQA methods such as BRISQUE (Blind/Referenceless Image Spatial Quality Evaluation), Laplacian Score, and PSNR (Peak Signal-To-Noise) algorithm on 430 sheets of high qual- ity data (HQD) and 430 sheets of low quality data (PQD), we showed that there were significant differences between high and low quality images in lesion detecting through BRISQUE and Laplacian scores (p<0.05). The PSNR value showed 10.62±1.76 dB on average, illustrating the lower lesion detection performance of PQD than HQD. In addi- tion, F1-Score of HQD showed higher detection performance at 77.42±3.36% while F1-Score of PQD showed 66.82±9.07%. Through this study, we hope to contribute to future gastroscopy lesion detection assistance systems that involve IQA algorithms by emphasizing the importance of using high quality data over lower quality data.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0