메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김성권 (경북대학교)
저널정보
대한수학회 대한수학회보 대한수학회보 제60권 제3호
발행연도
2023.5
수록면
677 - 685 (9page)
DOI
10.4134/BKMS.b220330

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
For $n\geq 2$ and a real Banach space $E$, ${\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself. Let $$\Pi(E)=\{[x^*, (x_1, \ldots, x_n)]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}~\}.$$ An element $[x^*, (x_1, \ldots, x_n)]\in \Pi(E)$ is called a {\em numerical radius point} of $T\in {\mathcal L}(^n E:E)$ if $|x^{*}(T(x_1, \ldots, x_n))|=v(T)$, where the numerical radius $v(T)=\sup_{[y^*, y_1, \ldots, y_n]\in \Pi(E)}\Big|y^{*}\Big(T(y_1, \ldots,y_n)\Big)\Big|$. For $T\in {\mathcal L}(^n E:E)$, we define \begin{align*} \qopname\relax o{Nradius}({T})=&\ \{[x^*, (x_1, \ldots, x_n)]\in \Pi(E): [x^*, (x_1, \ldots, x_n)]\\ &\quad \mbox{is a numerical radius point of}~T\}. \end{align*} $T$ is called a {\em numerical radius peak $n$-linear mapping} if there is a unique $[x^{*}, (x_1, \ldots, x_n)]\in \Pi(E)$ such that $\qopname\relax o{Nradius}({T})=\{\pm [x^{*}, (x_1, \ldots, x_n)]\}$. In this paper we present explicit formulae for the numerical radius of $T$ for every $T\in {\mathcal L}(^n E:E)$ for $E=c_0$ or $l_{\infty}$. Using these formulae we show that there are no numerical radius peak mappings of ${\mathcal L}(^n c_0:c_0)$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0