메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xiaocheng Yu (University of Kentucky) Qiulin Qin (University of Kentucky) Xia Wu (University of Kentucky) Dandan Li (University of Kentucky) Shengming Yang (University of Kentucky)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.42 No.7
발행연도
2020.1
수록면
735 - 742 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Handedness in plants introduced by helical growth of organs is frequently observed, and it has fascinated plant scientists for decades. However, the genetic control of natural handedness has not been revealed. In the model legume Medicago truncatula, pods can be coiled in a clockwise or anti-clockwise manner, providing a model for genetic analysis of plant handedness. Objective We aimed to localize the Sense of Pod Coiling (SPC) gene controlling pod coiling direction in M. truncatula. Methods Linkage analysis was used with a biparental population for fine mapping of the SPC gene. The genome sequence of M. truncatula Mt4.0 was used for marker identification and physical mapping. Single nucleotide polymorphisms (SNPs) between the parental lines were converted to CAPS (cleaved amplified polymorphic sequences) markers. Genetic map was constructed using the software JoinMap version 3.0. Gene predication and annotation provided by the M. truncatula genome database (http://www.medic agoge nome.org) was confirmed with the programs of FGENESH and Pfam 32.0, respectively. Quantitative reverse transcription PCR (qRT-PCR) was used to analyze the relative expression levels of candidate genes. Results The genetic analysis indicated that the anti-clockwise coiling is dominant to clockwise and is controlled by the single gene, SPC. The SPC gene was delimited to a 250 kb-region on Chromosome 7. Total of 15 protein-coding genes were identified in the SPC locus through gene annotation and sequence analysis. Of those, two genes, potentially encoding a receptor-like kinase and a vacuolar cation/proton exchanger respectively, were selected as candidates for the SPC gene. Conclusions The result presented here lay a foundation for gene cloning of SPC, which will help us to understand the molecular mechanisms underlying helical growth in plant organs.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0