메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최지훈 (Kongju National University) 김재웅 (Kongju National University) 박성현 (Kongju National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제10호(통권 제235호)
발행연도
2023.10
수록면
123 - 132 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Git의 커밋 메시지는 프로젝트 진행 혹은 운영 과정에서 소스가 변경되는 이력을 관리한다. 이러한 이력 데이터를 활용하면 프로젝트 리스크와 프로젝트 현황을 파악할 수 있어 비용 절감과 시간 효율개선을 높일 수 있다. 이와 관련된 많은 연구가 진행되고 있고 이러한 연구 분야 중 커밋 메시지를 소프트웨어 유지관리의 유형으로 분류하는 연구가 있다. 발표된 연구 중 최대 분류 정확도는 95%로 보고되어 있다. 본 논문에서는 커밋 분류 모델을 이용한 솔루션 등의 활용을 목적으로 연구를 시작했고, 기존 연구 중 정확도가 가장 높은 모델이 JAVA 언어로 작성된 프로그램에만 적용할 수 있는 제약을 없애기 위한 연구를 수행하였다. 이를 위해 GPT를 이용해서 소스 변경 데이터를 자연어로 표준화하는 단계를 추가 설계하고 구현하였다. 본문은 Git에서 커밋 메시지와 소스 변경 데이터를 추출하고, GPT로 소스 변경 데이터를 표준화하는 과정과 디스틸버트(DistilBERT) 모델을 이용한 학습 과정을 설명한다. 검증 결과 91%의 정확도를 측정하였다. 제안하는 모델은 정확도를 확보하고 특정 프로그램에 종속되지 않고 분류할 수 있는 모델을 구현 및 검증하였다. 향후 Bard를 이용한 분류 모델 연구와 제안한 분류 모델을 이용해 프로젝트에 도움이 되는 관리 도구 모델에 관해 연구할 계획이다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Validation
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0