메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김유림 (Kyungpook National University) 김재일 (Kyungpook National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제10호(통권 제235호)
발행연도
2023.10
수록면
27 - 35 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 복합소재 생산 분야에서 수요가 높은 프리프레그 섬유 제조 공정에 딥러닝 기반의 결함 검출 및 분류 시스템을 적용하여 생산성을 높이는 과정을 제안한다. 다양한 조건별 다량의 불량발생으로 해결방안이 필요한 토우 프리프레그 제조 장비에 적용하기 위해 우선 결함 감지와 분류 모델 제작에 필요한 카메라 및 조명을 선정하여 최적의 환경을 구축하였다. 그리고 다중 분류 모델 제작에 필요한 데이터를 수집하고 정상 및 불량 조건에 따라 라벨링을 진행하였다. 다중 분류 모델은 CNN기반으로 제작하였으며 VGGNet과 MobileNet, ResNet 등의 사전 학습모델을 적용하여 성능을 비교하고 정확도 및 손실 그래프로 개선 방향을 파악한다. 주요 문제로 과적합 문제를 확인하여 개선하기 위해 데이터 증강 및 Dropout 기법을 적용하여 보완하였다. 모델에 대한 성능 평가를 위해 혼돈행렬을 성능지표로 한 성능 평가를 진행하였으며 99% 이상의 성능을 확인하였다. 또한, 실제 공정에 적용하여 실시간 획득된 이미지에 대한 분류 결과를 확인해보며 판별 값이 정확히 도출되는지 확인한다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0