메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sang-Bin Lee (Korea Aerospace University) Ji-Hoon Kim (Korea Aerospace University) Gwan Kim (Korea Aerospace University) Jun-Woo Park (Korea Aerospace University) Byung-Kwan Chae (Korea Aerospace University) Hee-Hwan Choe (Korea Aerospace University)
저널정보
한국진공학회(ASCT) Applied Science and Convergence Technology Applied Science and Convergence Technology Vol.32 No.5
발행연도
2023.9
수록면
122 - 126 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study proposes a model that combines deep learning (DL) techniques with plasma simulations to efficiently investigate optimal process conditions. The DL model was trained using data obtained from an Ar/O₂ inductively coupled plasma discharge simulation. Plasma discharge parameters such as the O₂ ratio, pressure, and power were trained as input data to predict the electron density, electron temperature, potential, and the densities of Ar⁺, O<SUP>2+</SUP>, O⁻, and O⁺. The performance of the DL model was verified by comparing the results of interpolation, which predicted a constant pattern within the range of the trained data, and extrapolation, which predicted a pattern beyond the trained data range, with the ground truth to verify the low error rate. The proposed deep neural network model can significantly reduce the necessity for trial and error when adjusting the process conditions. This model is expected to be an effective tool for narrowing the process window during the early stages of equipment and process development.

목차

ABSTRACT
1. Introduction
2. Material and methods
3. Results and discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088165953