메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Rigoberto Lopez Reyes (Wonkwang University) Min-Soo Ghim (Wonkwang University) Young-Sam Cho (Wonkwang University)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.40 No.10
발행연도
2023.10
수록면
805 - 812 (8page)
DOI
10.7736/JKSPE.023.071

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, the demand for lightweight open-pore lattice structures with specific stiffness is increasing in many fields, such as the aeronautical, automotive, mechanical and bone tissue engineering sectors. For each concrete application, there is a need to predict its mechanical properties precisely and efficiently. There are several methods used to analyze the mechanical properties of lattice structures. Among them, the asymptotic expansion homogenization method is a more advantageous approach over the experimental, theoretical, and finite element methods, because it handles some of their limitations such as the time-consuming process, size effect, and the high amount of computational resources needed. Therefore, in this work, we use the asymptotic expansion homogenization method to perform a systematic parametric study to calculate the effective stiffness of different open-pore lattice structures. In addition, the designed models were fabricated using an SLA 3D printer, and the effective stiffness of the fabricated specimens was tested via UTM experiment to validate the numerical results computed by the asymptotic expansion homogenization method. Consequently, it was proved that this method is precise and effective for predicting the mechanical properties of lattice structures.

목차

1. Introduction
2. Design and Fabrication of Unit-cell
3. Results
4. Discussion
5. Conclusion
REFERENCES

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088067318