메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seksan Laitrakun (Thammasat University) Somrudee Deepaisarn (Thammasat University) Sarun Gulyanon (Thammasat University) Chayud Srisumarnk (Thammasat University) Nattapol Chiewnawintawat (Thammasat University) Angkoon Angkoonsawaengsuk (Thammasat University) Pakorn Opaprakasit (Thammasat University) Jirawan Jindakaew (Thammasat University) Narisara Jaikaew (Thammasat University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.21 No.3
발행연도
2023.9
수록면
208 - 215 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning techniques provide powerful solutions to several pattern-recognition problems, including Raman spectral classification. However, these networks require large amounts of labeled data to perform well. Labeled data, which are typically obtained in a laboratory, can potentially be alleviated by data augmentation. This study investigated various data augmentation techniques and applied multiple deep learning methods to Raman spectral classification. Raman spectra yield fingerprint-like information about chemical compositions, but are prone to noise when the particles of the material are small. Five augmentation models were investigated to build robust deep learning classifiers: weighted sums of spectral signals, imitated chemical backgrounds, extended multiplicative signal augmentation, and generated Gaussian and Poisson-distributed noise. We compared the performance of nine state-of-the-art convolutional neural networks with all the augmentation techniques. The LeNet5 models with background noise augmentation yielded the highest accuracy when tested on real-world Raman spectral classification at 88.33% accuracy. A class activation map of the model was generated to provide a qualitative observation of the results.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. LITERATURE REVIEW
Ⅲ. MATERIALS AND METHODS
Ⅳ. RESULTS
Ⅴ. DISCUSSION, CONCLUSIONS AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088169068