메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박진배 (경희대학교) Teerath Kumar (경희대학교) 배성호 (경희대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제25권 제6호
발행연도
2020.11
수록면
854 - 860 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
심층 신경망은 영상 분류 그리고 음성 인식 등 다양한 분야에서 뛰어난 성능을 보여주었다. 그 중에서 데이터 증대를 통해 생성된 다양한 데이터는 신경망의 성능을 향상하게 시키는 데 중요한 역할을 했다. 일반적으로 데이터의 변형을 통한 증대는 신경망이 다채로운 예시를 접하고 더 일반적으로 학습되는 것을 가능하게 했다. 기존의 영상 분야에서는 신경망 성능 향상을 위해 새로운 증대 방법을 제시할 뿐만 아니라 데이터와 신경망의 구조에 따라 변화할 수 있는 최적의 데이터 증대 방법의 탐색 방법을 제안해왔다. 본 논문은 이에 영감을 받아 음향 분야에서 최적의 데이터 증대 방법을 탐색하는 것을 목표로 한다. 잡음 추가, 음의 높낮이 변경 혹은 재생 속도를 조절하는 등의 증대 방법들을 다양하게 조합하는 실험을 통해 경험적으로 어떤 증대 방법이 가장 효과적인지 탐색했다. 결과적으로 자연 음향 데이터 세트 (ESC-50)에 최적화된 데이터 증대 방법을 적용함으로써 분류 정확도를 향상하게 시킬 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
참고문헌 (References)

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0