메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이예지 (인천대학교) 최두성 (청운대학교)
저널정보
한국생활환경학회 한국생활환경학회지 한국생활환경학회지 제30권 제4호
발행연도
2023.8
수록면
384 - 395 (12page)
DOI
10.21086/ksles.2023.8.30.4.384

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To predict the output of a photovoltaic system and efficiently manage it, it is essential to collect information on environmental variables such as solar radiation, temperature, cloudiness, etc. If it is impossible to collect information on environmental variables at the target location and public measurement stations are located far away, information can be interpolated using spatial statistical analysis. Spatial statistics techniques can predict location variables without existing data, but the prediction performance depends on the density or distance of the station used for analysis, the resolution of the grid, or the cell size. Therefore, in this study, solar radiation was predicted by the inverse distance weighted(IDW) interpolation method, and the amount of power generated by the PV system in operation was estimated using the predicted insolation information. In addition, the effect of the minimum distance of the station and the cell size of the grid on the prediction of solar radiation and power output was analyzed. As a result, The prediction performance using the IDW was analyzed to be relatively accurate when the minimum distance of the observation station was about 25km. However, the correlation of prediction accuracy according to the minimum distance to the station was not observed. The cell size of spatial interpolation also affected the accuracy, with up to 53.2% improvement in accuracy when the cell size was above 50,000m compared to below 50,000m.

목차

Abstract
1. 서론
2. 일사량 및 발전량 예측 방법
3. 데이터 개요 및 연구대상
4. 예측 영향요인 분석 결과
5. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088072953