메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최성호 (전남대학교) 박경범 (포스코홀딩스) 이재열 (전남대학교)
저널정보
(사)한국CDE학회 한국CDE학회 논문집 한국CDE학회 논문집 제28권 제3호
발행연도
2023.9
수록면
282 - 293 (12page)
DOI
10.7315/CDE.2023.282

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Volumetric medical image segmentation is critical in diagnosing diseases and planning subsequent treatment. The convolutional neural network (CNN)-based U-Net was proposed for conducting accurate and robust medical image segmentation since the skip connection of U-Net and deep feature representation significantly improved its performance. However, since CNN-based models mainly focus on local and low-level features, they cannot extract global and high-level features effectively. Meanwhile, the Vision Transformer developed in natural language processing is proposed to improve image classification performance by splitting an input image into patches and conducting linear embeddings of the patches, which can extract global features. However, the Vision Transformer has difficulty in handling detailed and low-level features. This study proposes SwinResNet which can effectively conduct volumetric medical image segmentation by fusing the Swin Transformer and CNN models. The combination can take advantage of both models and complement each other. Swin Transformer and ResNet are used as encoders, and the receptive field blocks and aggregation modules are applied to the multi-level features extracted from both encoders. Comprehensive evaluation shows that the proposed approach outperforms well-known previous studies.

목차

ABSTRACT
1. 서론
2. 관련연구
3. 제안하는 방법
4. 평가
5. 결론
References

참고문헌 (37)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0