메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김희진 (동의대학교) 윤재혁 (동의대학교) 권순각 (동의대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제28권 제4호
발행연도
2023.8
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 딥러닝을 통해 실시간으로 임베디드 기기에서 점자 블록을 인식하는 방법을 제안한다. 먼저 고성능 컴퓨터에서 점자 블록 인식을 위한 딥러닝 모델을 학습시키고, 임베디드 기기에 적용하기 위하여 학습 모델을 경량화 도구에 적용한다. 점자 블록의 보행 정보를 인식하기 위해 영상에서 점자블록과의 거리를 이용하여 경로를 판별하는 알고리즘을 사용한다. 임베디드 기기를 통해 촬영한 영상에서 YOLOv8 모델을 통해 점자 블록, 볼라드, 횡단보도를 검출한 후 점자블록 경로 판별 알고리즘을 거쳐 보행정보를 인식한다. 실시간으로 점자 블록을 검출하기 위해 모델 경량화 도구를 YOLOv8에 적용한다. YOLOv8 모델 가중치의 정밀도를 기존 32비트에서 8비트로 낮추고, TensorRT 최적화 엔진을 적용하여 모델의 최적화를 진행한다. 제안된 방법을 통해 경량화 된 모델을 기존 모델과 비교한 결과, 경로 인식 정확도는 99.05%로 기존 모델과 거의 차이가 없지만, 인식속도는 기존 모델 대비 59% 단축되어 1초에 약 15개의 프레임을 처리할 수 있다.

목차

요약
Abstract
1. 서론
2. 시스템 구성 및 실험
3. 실험결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-530-001995252