메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정지욱 (한국전자통신연구원) 송윤선 (한국전자통신연구원) 이수열 (한국전자통신연구원)
저널정보
한국비파괴검사학회 비파괴검사학회지 비파괴검사학회지 제43권 제4호
발행연도
2023.8
수록면
259 - 267 (9page)
DOI
10.7779/JKSNT.2023.43.4.259

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
항만 및 공항을 통과하는 화물 내 위험화물을 감지하기 위해 X-선 영상을 촬영하고 판독관이 육안으로 적발하고 있으며, 검출 정확도 및 일관성을 위해 위험화물 사전 스크리닝을 위한 영상 검색 분야에 딥러닝 인공 신경망 학습기법을 이용한 다양한 객체 검출 알고리즘이 적용되고 있다. 본 연구에서는 최근 주목받고 있는 비전 트랜스포머 백본을 이용한 Faster R-CNN, PAA, D2Det 등의 다양한 디텍터 알고리즘을 휴대수하물 영상 내 위험화물 검출에 적용하였다. 또한, 다양한 학습기법을 적용하여 검출 성능을 개선하기 위해 Soft Teacher, MAE (Masked Auto-Encoder), SimMIM 등의 자기지도학습 뿐만 아니라, DeiT, BEiT 등의 사전학습기법으로부터의 전이학습을 적용하였다. SIXray 데이터셋 내 객체 검출에 적용해본 결과, Swin Transformer 백본의 경우, mAP<SUB>0.5</SUB> = 86.1 %, ViT 백본의 경우, mAP<SUB>0.5</SUB> = 85.5 %의 검출 성능을 달성하였다.

목차

초록
Abstract
1. 서론
2. 학습 데이터셋
3. 딥러닝 인공지능 객체 검출 알고리즘
4. 실험 방법
5. 실험 결과 및 토의
6. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-530-002021604