메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Woo-Jin Lee (Silla University) Yong-Whan Choi (Silla University) Sang-Seok Yun (Silla University) Injoo Hwang (Silla University)
저널정보
한국동력기계공학회 동력시스템공학회지 동력시스템공학회지 제27권 제4호
발행연도
2023.8
수록면
66 - 73 (8page)
DOI
10.9726/kspse.2023.27.4.066

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, some research has been attended to estimate the moving destination automatically from a recognized object in order to run a user"s errands in an indoor environment. In this paper, we propose a process for estimating optimal position for manipulating the object through real-time object recognition and the generalized Voronoi graph (GVG) update on the map. First, an initial node is created through the GVG based on a pre-written grid map. When and when the robot moves to the target node, the identity and size of the object are estimated by the robot through the RGB-D sensor and object recognition (YOLO v4). At the same time, it receives obstacle data around objects from the LiDAR sensor and calculates the workspace that the robot can serve on the map using the hybrid approach of the AT and the COG method. Then, according to the geometric distance relationship with the existing node to estimate the optimal position, the GVG is updated as a final node creation or movement procedure. While the robot located in the actual multiple spaces moves to the node, it is confirmed that it can move to the optimal position in the workspace.

목차

Abstract
1. Introduction
2. Experimental setup and method
3. Experimental results and discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-550-001985914