메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배병규 (부산대학교) 안재훈 (부산대학교) 정현준 (국토안전관리원) 유창균 (국토안전관리원)
저널정보
한국지반공학회 한국지반공학회논문집 한국지반공학회논문집 제39권 제7호
발행연도
2023.7
수록면
31 - 37 (7page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
터널은 지중에 건설되는 구조물이므로 육안으로 터널 강지보재의 위치 등의 확인이 불가능하다. 이에, 터널 유지관리시에는, 일반적으로 GPR 이미지를 활용하여 강지보재 탐지를 수행한다. 인공신경망을 통한 GPR 이미지 분석에 대한 연구는, 주로 지하배관, 도로 손상 등의 탐지에 집중되어 있으며, 강지보재 등의 터널 GPR 데이터를 분석한 사례는 해외와 국내 모두 제한적이다. 본 연구에서는, 합성곱 신경망을 기반으로 하는 1단계 객체인식 알고리즘인 YOLO를 활용하여, GPR 데이터를 바탕으로 한 터널 강지보재의 위치 탐지를 자동화하고, 그 성능을 분석한다. 원본 이미지 데이터는 총 512개이며 원본 이미지 데이터로 이루어진 데이터 세트와 원본 이미지 데이터와 증식기법이 적용된 이미지 데이터를 병합한 2,048개의 데이터로 이루어진 데이터 세트를 해석에 활용하였다. 증식한 데이터를 사용한 모델의 강지보재 누락율(전체 강지보재와 탐지하지 못한 지보재 숫자의 비율)은 0.38%, 원본 데이터만을 활용한 모델의 강지보재 누락율은 7.18%로 나타났다. 따라서, 분석 자동화 측면에서는, 증식기법이 적용된 데이터 세트를 활용하는 것이 더 실용적일 것으로 판단된다.

목차

Abstract
요지
1. 서론
2. 딥러닝 분석 방법
3. 터널 GPR 이미지 분석 결과
4. 결론
참고문헌 (References)

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-531-001920165