메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한석호 (Korea Electronics Technology Institute (KETI)) 장훈석 (Korea Electronics Technology Institute (KETI))
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제16권 제3호
발행연도
2023.6
수록면
123 - 129 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
응시점을 통해 어떤 것을 보고 있는지 알 수 있다면 많은 정보를 얻을 수 있다. 응시 추적 기술의 발달로 응시점에 대한 정보는 다양한 응시 추적 기기에서 제공해주는 소프트웨어를 통해 얻을 수 있다. 하지만 실제 응시 깊이와 같은 정확한 정보를 추정하기란 어렵다. 응시 추적 기기를 통해 만약 실제 응시 깊이로 보정할 수 있다면 시뮬레이션, 디지털 트윈, VR 등 다양한 분야에서 현실적이고 정확한 신뢰성 있는 결과를 도출하는 것이 가능해질 것이다. 따라서 본 논문에서는 응시 추적 기기와 소프트웨어를 통해 원시 응시 깊이를 획득하고 보정하는 실험을 진행한다. 실험은 Deep Neural Network(DNN) 모델을 설계한 후 소프트웨어에서 제공하는 응시 깊이 값을 300mm에서 10,000mm까지 지정한 거리별로 획득한다. 획득한 데이터는 설계한 DNN 모델을 통해 학습을 진행하여 실제 응시 깊이와 대응하도록 보정하였다. 보정한 모델을 통해 실험을 진행한 결과, 300mm에서 10,000mm까지 지정한 거리별 297mm, 904mm, 1,485mm, 2,005mm, 3,011mm, 4,021mm, 4,972mm, 6,027mm, 7,026mm, 8,043mm, 9,021mm, 10,076mm로 실제와 비슷한 응시 깊이 값을 획득할 수 있었다.

목차

요약
Abstract
1. 서론
2. 개발 환경 구축
3. 삼차원 응시점 추정
4. 제안된 방법
4. 실험 결과
5. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-569-001741157