메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Narong Wichapa (Kalasin University) Waraporn Warorot (Kalasin University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.22 No.2
발행연도
2023.6
수록면
97 - 108 (12page)
DOI
10.7232/iems.2023.22.2.097

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Data envelopment analysis (DEA) is an effective method for evaluating the relative efficiency of a set of homogeneous decision-making units (DMUs) with precise variables. However, the input/output variables in practical problems may be measured as fuzzy values. In this research, we have developed a hybrid approach for ranking DMUs with fuzzy variables. To begin, a new multi-objective fuzzy data envelopment analysis model (MOFDEA model) based on the alpha-cut method is proposed to measure the DMUs" efficiency interval. As a result, the efficiency interval matrix (EI matrix) is generated. After obtaining the EI matrix, a new optimization model based on Shannon’s entropy is offered to determine criteria weights. Finally, TOPSIS is employed for ranking all DMUs. In this paper, a numerical example of eight manufacturing enterprises is illustrated to show the reliability and effectiveness of the proposed methodology. The proposed MOFDEA model has the main advantage of being able to obtain optimal DEA weights that fully satisfy fuzzy DEA. In addition, the original Shannon entropy method was converted into a new optimization model, an objective weighting method, in order to find criteria weights, which can be conveniently and easily solved using any optimization solver in certain cases involving large amounts of data.

목차

ABSTRACT
1. INTRODUCTION
2. TRIANGULAR FUZZY ARITHMETIC OPERATIONS
3. THE PROPOSED APPROACH
4. ILLUSTRATIONS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-001477219