메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정희정 (부산대학교) 엄준식 (부산대학교)
저널정보
한국환경과학회 한국환경과학회지 한국환경과학회지 제31권 제1호
발행연도
2022.1
수록면
61 - 76 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this study, surface particulate matter (PM<SUB>2.5</SUB>) concentrations were calculated based on empirical equations using measurements of ceilometer backscatter intensities and meteorological variables taken over 19 months. To quantify the importance of meteorological conditions on the calculations of surface PM<SUB>2.5</SUB> concentrations, eight different meteorological conditions were considered. For each meteorological condition, the optimal upper limit height for an integration of ceilometer backscatter intensity and coefficients for the empirical equations were determined using cross-validation processes with and without considering meteorological variables. The results showed that the optimal upper limit heights and coefficients depended heavily on the meteorological conditions, which, in turn, exhibited extensive impacts on the estimated surface PM<SUB>2.5</SUB> concentrations. A comparison with the measurements of surface PM<SUB>2.5</SUB> concentrations showed that the calculated surface PM<SUB>2.5</SUB> concentrations exhibited better results (i.e., higher correlation coefficient and lower root mean square error) when considering meteorological variables for all eight meteorological conditions. Furthermore, applying optimal upper limit heights for different weather conditions revealed better results compared with a constant upper limit height (e.g., 150 m) that was used in previous studies. The impacts of vertical distributions of ceilometer backscatter intensities on the calculations of surface PM<SUB>2.5</SUB> concentrations were also examined.

목차

Abstract
1. 서론
2. 자료 및 방법
3. 결과 및 고찰
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0