메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김인기 (Korea National University of Transportation) 김범준 (Korea National University of Transportation) 곽정환 (Korea National University of Transportation)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제5호(통권 제230호)
발행연도
2023.5
수록면
17 - 28 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
포장도로에서 발생하는 포트홀은 고속 주행 차량에 치명적인 영향을 미치며, 사망사고를 유발할 수 있는 도로상의 장애물이다. 이를 방지하기 위해 일반적으로는 작업자가 직접 포트홀을 탐지하는 방식을 사용해왔으나, 이는 작업자의 안전 문제와 예측하기 어려운 범주에서 발생하는 모든 포트홀을 인력으로 탐지하는 것이 비효율적이기 때문에 한계가 있다. 또한, 도로 환경과 관련된 지반 환경이 포트홀 생성에 영향을 미치기 때문에, 완벽한 포트홀 방지는 어렵다. 데이터셋 구축을 위해서는 전문가의 지도하에 라벨링 작업이 필요하지만, 이는 매우 시간과 비용이 많이 필요하다. 따라서, 본 논문에서는 Mean Teacher 기법을 사용하여 라벨링된 데이터의 샘플 수가 적더라도 지도학습보다 더욱 강인한 포트홀 이미지 분류 성능을 보여준다. 이러한 결과는 성능지표와 GradCAM을 통해 입증되었으며, 준지도학습을 사용할 때 15개의 사전 학습된 CNN 모델이 평균 90.41%의 정확도를 달성하며, 지도학습과 비교하여 2%에서 9%의 차이로 강인한 성능을 나타내는 것을 확인하였다.

목차

Abstract
요약
I. Introduction
II. Related Work
III. Proposed Method
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-001567480