메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
金鉉哲 (延世大學) 趙涵元 (延世大學)
저널정보
중국어문학연구회 중국어문학논집 中國語文學論集 第139號
발행연도
2023.4
수록면
67 - 89 (23page)
DOI
10.25021/JCLL.2023.4.139.67

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, through the investigation and analysis of the structure and semantic features of V-A Resultative Constructions(VA動結式) in Modern Chinese(such as "打碎" "洗乾淨" etc). The structure is re-divided into two types of which is the prototype ‘NP1+V+R(A)+NP2’ and for the variable-type is ‘NP+V+R(A)’. Then use the grammatical blending theory to analyze the formation mechanism of V-A Resultative Construction. As a result, the following conclusions are drawn:
First, the essence of the V-A Resultative Construction formula is a causative meaning. Both events are causative, which the construction is composed of causing events and resulting events.
Second, self-variable meaning(自變義) is a variant of agent causative meaning(施事類致使義). When the causer of the causing events and the receiver of the resultant event are unified in the imaginary space, and the verb is intransitive, a self-variable semantic V-A Resultative Construction is obtained, and vice versa, the action behavior is verb-object Structure, it will be defined as the type of agent causative meaning(施事類致使義).
Third, deviating meaning(The result is different from what humans expect) and non-deviating meaning(The results are independent of human expectations) are two different categories. Although they have no ‘Object’ in terms of syntactic structure, in fact the internal semantic generation mechanism is different.
And to draw the following conclusion, Grammatical blending provides a new perspective of innovative thinking for the research on the construction of V-A Resultative Construction.

목차

1. 引言
2. VA動結式的分類
3. VA動結式的句法語義生成機制
5. 結論
參考文獻
ABSTRACT

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-820-001467165