지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수
Abstract
1. Introduction
2. Use of clustering in sufficient dimension reduction
3. Numerical studies
4. Real data examples: Minneapolis school data and Massachusetts college data
5. Discussion
References
논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!
Clustering high-cardinality categorical data using category embedding methods
한국데이터정보과학회지
2020 .01
AMI로부터 측정된 전력사용데이터에 대한 군집 분석
응용통계연구
2021 .12
Functional hierarchical clustering using shape distance
CSAM(Communications for Statistical Applications and Methods)
2024 .09
Comparison of time series clustering methods and application to power consumption pattern clustering
CSAM(Communications for Statistical Applications and Methods)
2020 .11
Comparison of graph clustering methods for analyzing the mathematical subject classification codes
CSAM(Communications for Statistical Applications and Methods)
2020 .09
Clustering daily AMI data using the two-step clustering method
한국데이터정보과학회지
2022 .01
Geodesic Clustering for Covariance Matrices
CSAM(Communications for Statistical Applications and Methods)
2015 .07
Clustering non-stationary advanced metering infrastructure data
CSAM(Communications for Statistical Applications and Methods)
2022 .03
Nonparametric analysis of income distributions among different regions based on energy distance with applications to China Health and Nutrition Survey data
CSAM(Communications for Statistical Applications and Methods)
2019 .01
Tutorial: Methodologies for sufficient dimension reduction in regression
CSAM(Communications for Statistical Applications and Methods)
2016 .03
스펙트럴 클러스터링 - 요약 및 최근 연구동향
응용통계연구
2020 .04
비즈니스 데이터 분석을 위한 베이지안 계층 군집분석
한국데이터정보과학회지
2020 .01
Fused inverse regression with multi-dimensional responses
CSAM(Communications for Statistical Applications and Methods)
2021 .05
Tutorial: Dimension reduction in regression with a notion of sufficiency
CSAM(Communications for Statistical Applications and Methods)
2016 .03
Double monothetic clustering for histogram-valued data
CSAM(Communications for Statistical Applications and Methods)
2018 .05
양적․질적 혼합형 데이터에 대한 군집분석 알고리즘 비교 및 사례분석
Journal of The Korean Data Analysis Society
2015 .01
K-mean clustering 기법을 활용한 지역별 고농도 오존 발생 원인 비교
한국기상학회 학술대회 논문집
2022 .04
Variable Selection and Outlier Detection for Automated K-means Clustering
CSAM(Communications for Statistical Applications and Methods)
2015 .01
COUNTING OF FLOWERS BASED ON K-MEANS CLUSTERING AND WATERSHED SEGMENTATION
JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS
2023 .06
Intensive numerical studies of optimal sufficient dimension reduction with singularity
CSAM(Communications for Statistical Applications and Methods)
2017 .05
0