메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박선 (전북대학교) 조성일 (인하대학교) 이우주 (서울대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제34권 제1호
발행연도
2021.2
수록면
9 - 23 (15page)

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 평균장 방법(mean-field methods)을 기반으로 사후 분포(posterior distribution)를 근사하는 방법인 변분 베이즈 방법(variational Bayes methods)에 대해 소개한다. 특히, 모수들을 실수공간으로 변환 후의 결합 사후분포를 가우시안 분포(Gaussian distribution)들의 곱(product)으로 근사하는 방법인 자동 미분 변분 추론(automatic differentiation variational inference) 방법에 대해 자세히 소개하고, 환자에게 약물을 투여한 후 시간에 따라 약물의 흐름을 파악하는 연구인 약물동태학 모형(pharmacokinetic models)에 적용한다. 소개된 변분 베이즈 방법을 이용하여 자료분석을 실시하고 마코프 체인 몬테 카를로(Markov chain Monte Carlo)방법을 기초로한 자료분석의 결과와 비교한다. 알고리즘의 구현은 Stan을 이용한다.

목차

Abstract
1. 서론
2. 방법론
3. 분석
4. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0