메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lei Peng (Assumption University) Kwankamol Nongpong (Assumption University) Paitoon Porntrakoon (Assumption University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.12 No.2
발행연도
2023.4
수록면
178 - 185 (8page)
DOI
10.5573/IEIESPC.2023.12.2.178

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Analyzing the developing trends of educational data has always been an important issue. However, it is challenging to do it manually because of the data expansion in recent years. A topic evolution-analyzing framework, comprised of a data crawling module and a topic-processing module, is proposed to solve this problem. The Chongqing Three Gorges Medical College of China was used as a case for the experiment, and the framework was implemented using Python language. First, the data were obtained from the website, and its format was reorganized, which is appropriate to be fed into the topic-processing module. Subsequently, all topics were obtained and interpreted as several related phrases. Finally, the topic evolution was obtained over years and months. This work can help education organizations with their historical information summarization, contributing to their development planning and providing academic support to the decision-makers.

목차

Abstract
1. Introduction
2. Related Work
3. Crawler Designing and Data Cleaning
4. Topic Modeling
5. Experiment
6. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0