메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종현 (Inha University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제4호(통권 제229호)
발행연도
2023.4
수록면
65 - 73 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 콘크리트 균열 이미지 데이터셋을 효율적으로 얻기 위한 합성곱 신경망 네트워크 학습 기반의 데이터 증강기법을 제안한다. 실제 콘크리트 균열 이미지는 정형화된 형태가 없고 복잡한 패턴을 지니고 있어 얻기 어려울 뿐만 아니라, 데이터를 확보할 때 위험한 상황에 노출될 우려가 있다. 이러한 상황에 노출된 데이터셋 수집 문제를 본 논문에서는 벡터와 두께 기반의 데이터 증강 기법을 통해 비용과 시간적 측면에서 효율적으로 해결한다. 또한 제안한 방법을 효율성을 입증하고자 U-Net기반의 균열 검출을 통해 다양한 장면에서 실험을 진행했고, IoU 정확도로 측정했을 때 모든 장면에서 성능이 향상되었다. 콘크리트 균열 데이터를 증강하지 않았을 경우 잘못 예측된 경우의 비율이 약 25%였으나, 우리의 방법을 통해 데이터 증강을 했을 경우 잘못 예측된 비율이 3%까지 감소하였다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Experiment and Results
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0