메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정서영 (광운대학교) 이슬기 (광운대학교) 박찬일 (광운대학교) 조수영 (광운대학교) 유정호 (광운대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第35卷 第11號(通卷 第373號)
발행연도
2019.11
수록면
163 - 170 (8page)

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most of the current crack investigation work consists of visual inspection using simple measuring equipment such as crack scale. These methods involve the subjection of the inspector, which may lead to differences in the inspection results prepared by the inspector, and may lead to a large number of measurement errors. So, this study proposes an image-based crack detection method to enhance objectivity and efficiency of concrete crack investigation. In this study, YOLOv2 was used to determine the presence of cracks in the image information to ensure the speed and accuracy of detection for real-time analysis. In addition, we extracted shapes of cracks and calculated quantitatively, such as width and length using various image processing techniques. The results of this study will be used as a basis for the development of image-based facility defect diagnosis automation system.

목차

Abstract
1. 서론
2. 예비적 고찰
3. 딥러닝을 활용한 균열여부 판단 모델 개발
4. 딥러닝 및 영상처리 기술을 활용한 균열검출 프로세스
5. 검증
6. 결론
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0