메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A common interest in gene expression data analysis is to identify genes that present significant changes in expression levels among biological experimental conditions. In this paper, we develop a Bayesian approach to make a gene-by-gene comparison in the case with a control and more than one treatment experimental condition. The proposed approach is within a Bayesian framework with a Dirichlet process prior. The comparison procedure is based on a model selection procedure developed using the discreteness of the Dirichlet process and its repre-sentation via Polya urn scheme. The posterior probabilities for models considered are calculated using a Gibbs sampling algorithm. A numerical simulation study is conducted to understand and compare the performance of the proposed method in relation to usual methods based on analysis of variance (ANOVA) followed by a Tukey test. The comparison among methods is made in terms of a true positive rate and false discovery rate. We find that proposed method outperforms the other methods based on ANOVA followed by a Tukey test. We also apply the methodologies to a publicly available data set on Plasmodium falciparum protein.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001574162