메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
고윤희 (한국외국어대학교)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.41 No.5
발행연도
2019.1
수록면
547 - 555 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Simultaneous measurement of gene expression level for thousands of genes contains the rich information about many different aspects of biological mechanisms. A major computational challenge is to find methods to extract new biological insights from this wealth of data. Complex biological processes are often regulated under the various conditions or circumstances and associated gene interactions are dynamically changed depending on different biological contexts. Thus, inference of such dynamic relationships between genes with consideration of biological conditions is very challenging. Method In this study, we propose a comprehensive and integrated approach to infer the dynamic relationships between genes and evaluate this approach on three distinct gene networks. Results This study demonstrates the advantage of integrating Markov chain Monte Carlo (MCMC) simulation into a Bayesian mixture model to overcome the high-dimension, low sample size (HDLSS) problem as well as to identify context-specific biological modules. Such biological modules were identified through the summarization of sampled network structures obtained from MCMC simulation. Conclusion This novel approach gives a comprehensive understanding of the dynamically regulated biological modules.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0