메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제31권 제6호
발행연도
2018.12
수록면
707 - 719 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
시계열 데이터의 분류와 군집화를 효율적으로 수행하기 위해 다양한 시계열 표현 방법들이 제안되었다. 본 연구는 Lin 등 (2007)이 제안한 국소 평균 근사를 이용하여 시계열의 차원을 축소한 후 심볼릭 자료로 이산화하는 symbolic aggregate approximation (SAX) 방법의 개선에 대해서 연구하였다. SAX는 국소 평균 근사를 할 때 등간격으로 임의의 개수의 세그먼트로 나누어 평균을 계산하여 세그먼트의 개수에 그 성능이 크게 좌우된다. 따라서 본 논문은 불균형 Haar 웨이블릿 변환을 통해 국소 평균 수준을 등간격이 아니라 자료의 특성을 반영하여 자료 의존적으로 선택하게 함으로써 시계열의 차원을 효과적으로 축소함과 동시에 정보의 손실을 줄이는 방법에 대해서 제안한다. 제안한 방법은 실증 자료 분석을 통해 SAX 방법을 개선시킴을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001589201