메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yasuyuki Nishi (Ibaraki University) Hiromichi Koga (Ibaraki University) Terumi I nagaki (Ibaraki University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.16 No.1
발행연도
2023.3
수록면
110 - 128 (19page)
DOI
10.5293/IJFMS.2023.16.1.110

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, a multi-objective optimization design method, combining a design of experiments single phase flow analysis, response surface method and a multi-objective optimization method was developed to optimize the collection device shape of an axial flow hydraulic turbine with a collection device to achieve high power and low axial thrust. In addition, the effectiveness of this design method was validated through verification experiments in an open channel with shallow water depth and multiphase flow analysis considering a free surface, and the differences from the single phase flow analysis results were also discussed. As a result, the optimized collection device obtained by this design method showed the same axial thrust coefficient and improved power coefficient compared with the original collection device in the single phase flow analysis. In the open channel, the power coefficient of the optimized collection device was significantly higher than that of the original collection device but unlike the results of the single phase flow analysis, the axial thrust coefficient of the diffuser was significantly increased, resulting in a significant increase in total axial thrust coefficient.

목차

Abstract
1. Introduction
2. Optimization Object and Multi-Objective Optimization Design Method
3. Numerical Analysis Method and Conditions
4. Experimental Apparatus and Method
5. Results and Discussions
6. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-554-001338859