메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김수연 (세종대학교) 이미경 (우석대학교) 임수정 (세종대학교)
저널정보
한국약제학회 Journal of Pharmaceutical Investigation Journal of Pharmaceutical Investigation 제46권 제4호
발행연도
2016.7
수록면
393 - 402 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Preclinical and early clinical studies of the adenovirus- based vectors for gene therapy have shown considerable promise for the future. Use of adenoviral vectors in gene therapy is, however, limited by the lack of adenoviral receptors on targeted cell types, induction of neutralizing antibodies, short blood circulation half-life of adenovirus (Ad), hepatotoxicity and low selective accumulation in the target disease site. Researchers have shown that chemical modification of the Ad surface may be an effective means to overcome the current limitations of Admediated gene transfer. In comparison, a small number of studies have addressed these issues by developing cationic lipid-based nanoparticles as an Ad-complexing formulation. Findings from these studies indicate that Ad complexation with cationic lipid-based nanoparticles is an effective and simple means to overcome the lack of receptors in target cells in vitro and to reduce the immunogenicity and hepatotoxicity of Ad vectors in vivo. In contrast, findings about the effect of cationic nanoparticle complexation in increasing the Ad accumulation in the target site in vivo are not consistent among studies. A definitive conclusion cannot be drawn at the current state due to the limited number of studies but the reasons for the discrepancy may include the differences in the lipid composition and the structure of cationic lipid-based nanoparticles. This review gives a comprehensive overview of current status in the development of cationic lipid-based nanoparticles as a vehicle to overcome the challenges of adenoviral vectors.

목차

등록된 정보가 없습니다.

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0