메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
안영휘 (공주대학교 대학원 박사수료) 박구락 (공주대학교) 김동현 (나사렛대학교) 김도연 (공주대학교 대학원 박사수료)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제12권 제9호
발행연도
2021.9
수록면
39 - 47 (9page)
DOI
https://doi.org/10.15207/JKCS.2021.12.9.039

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was conducted to propose a product planning prediction model using logistic regression algorithm to predict seasonal factors and rapidly changing product trends. First, we collected unstructured data of consumers in portal sites and online markets using web crawling, and analyzed meaningful information about products through preprocessing for transformation of standardized data. The datasets of 11,200 were analyzed by Logistic Regression to analyze consumer satisfaction, frequency analysis, and advantages and disadvantages of products. The result of analysis showed that the satisfaction of consumers was 92% and the defective issues of products were confirmed through frequency analysis. The results of analysis on the use satisfaction, system efficiency, and system effectiveness items of the developed product planning prediction program showed that the satisfaction was high. Defective issues are very meaningful data in that they provide information necessary for quickly recognizing the current problem of products and establishing improvement strategies.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0