메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조이상 (한성대학교) 김진홍 (배재대학교)
저널정보
한국지식정보기술학회 한국지식정보기술학회 논문지 한국지식정보기술학회 논문지 제16권 제6호
발행연도
2021.12
수록면
1,261 - 1,269 (9page)
DOI
10.34163/jkits.2021.16.6.014

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Over the last decades one could observe a drastic increase in the generation and storage of data in both, industry and science. While the field of data analysis is not new, it is now facing the challenge of coping with an increasing size, bandwidth and complexity of data. This renders traditional analysis methods and algorithms ineffective. This problem has been coined as the Big Data challenge. Concretely in science the major data producers are large-scale monolithic experiments and the outputs of domain simulations. Up until now, most of this data has not yet been completely analyzed, but rather stored in data repositories for later consideration due to the lack of efficient means of processing. We proposes a design and prototypical realization of such a framework based on the experience collected from empirical applications, so we called BDP(Big Data Processing). For this, selected scientific use cases, with an emphasis on earth sciences, were studied. In particular, these are object segmentation in point cloud data and biological imagery, outlier detection in oceanographic time-series data as well as land cover type classification in remote sensing images. In order to deal with the data amounts, two analysis algorithms have been parallelized for shared- and distributed-memory systems. The presented parallelization strategies have been abstracted into a generalized paradigm, enabling the formulation of scalable algorithms for other similar analysis methods. Moreover, it permits a large-scale data analysis framework and algorithm library for heterogeneous, distributed high-performance computing systems.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0