메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Khushal Paresh Thaker (Lakehead University) 심원형 (중앙대학교) Sabah Mohammed (Lakehead University) 이원형 (중앙대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제34권 제4호
발행연도
2021.12
수록면
111 - 124 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With increasing trends in technology, there is a huge volume of data that is being created. One field in technology in which high amount of data is consumed, is computer vision. Human beings are able to detect and recognize faces or objects with ease even with external conditions such as expressions, illuminations or viewing angle affecting the sight when compared to the machines. This is because of high dimensions of data associated with it. Data dimensionality is refered to as total number of variables being measured in every observation. This project aims to compare different applicable dimensionality reduction techniques suitable for facial recognition system and propose an ensemble model of such techniques that will help improving the accuracy of the model and gauge the performance by testing it with different datasets consisting of facial images with varying illuminations, complex backgrounds, and expressions. The proposed ensemble model extracts feature vectors from a hybrid of two dimensional reduction techniques ? Principal Component Analysis (PCA) and Locally Linear Embedding (LLE), and pass them through dense Convolutional Neural Network (CNN) to predict faces on the Labelled Faces in the Wild (LFW) dataset. The model performs with a testing accuracy of 0.95 and a testing F1 score of 0.94. The proposed system involves a webapp developed using Flask that captures a live video stream from a webcam which is integrated with the proposed ensemble model that allows the system to predict the face.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0