메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이제겸 (한양대학교) 최원혁 (한양대학교) 김양균 (한양대학교 자원개발연구소) 이승원 (한양대학교)
저널정보
한국터널지하공간학회 한국터널지하공간학회 논문집 한국터널지하공간학회 논문집 제23권 제6호
발행연도
2021.11
수록면
469 - 484 (16page)
DOI
https://doi.org/10.9711/KTAJ.2021.23.6.469

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
터널 설계 시 지반조사를 통한 암반분류 결과는 공사기간 및 공사비 산출, 그리고 터널안정성 평가에 지대한 영향을 미친 다. 국내에서 지금까지 완공된 3,526개소의 터널들의 설계 및 시공을 통해 관련 기술들은 지속적으로 발전되어 왔지만, 터널 설계 시 암질 및 암반등급을 보다 정확하게 평가하기 위한 방법에 대한 연구는 미미하여 평가자의 경험 및 주관에 따라 결과의 차이가 큰 경우가 적지 않다. 따라서 본 연구에서는 암석샘플에 대한 주관적 평가를 통한 기존의 인력에 의한 암반분류 대신, 최근 지반분야에서도 그 활용도가 급증하고 있는 머신러닝 알고리즘을 이용하여 시추조사에서 획득한 다양한 암석 및 암반정보를 분석하여 보다 신뢰성있는 RMR에 의한 암반분류 모델을 제시하고자 하였다. 국내 13개 터널을 대상으로 11개의 학습 인자(심도, 암종, RQD, 전기비저항, 일축압축강도, 탄성파 P파속도 및 S파 속도, 영률, 단위중량, 포아송비, RMR)를 선정하여 337개의 학습 데이터셋과 60개의 시험 데이터셋을 확보하였으며, 모델의 예측성능을 향상시키기 위해 6개의 머신러닝 알고리즘(DT, SVM, ANN, PCA & ANN, RF, XGBoost)과 각 알고리즘별 다양한 초매개변수(hyperparameter)를 적용하였다. 학습된 모델의 예측성능을 비교한 결과, DT 모델을 제외한 5개의 머신 러닝 모델에서 시험데이터에 대한 RMR 평균절대오차 값이 8 미만으로 수렴되었으며, SVM 모델에서 가장 우수한 예측 성능을 나타내었다. 본 연구를 통해 암반분류 예측에 대한 머신러닝 기법의 적용 가능성을 확인하였으며, 향후 다양한 데이터를 지속적으로 확보하여 예측모델의 성능을 향상시킨다면 보다 신뢰성 있는 암반 분류에 활용될 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0