메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Audrey K. C. Huong (Universiti Tun Hussein Onn Malaysia) Kim Gaik Tay (Universiti Tun Hussein Onn Malaysia) Xavier T. I. Ngu (Universiti Tun Hussein Onn Malaysia)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제27권 제4호
발행연도
2021.10
수록면
298 - 306 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Different complex strategies of fusing handcrafted descriptors and features from convolutional neural network(CNN) models have been studied, mainly for two-class Papanicolaou (Pap) smear image classification. This paper explores asimplified system using combined binary coding for a five-class version of this problem. Methods: This system extracted featuresfrom transfer learning of AlexNet, VGG19, and ResNet50 networks before reducing this problem into multiple binarysub-problems using error-correcting coding. The learners were trained using the support vector machine (SVM) method. The outputs of these classifiers were combined and compared to the true class codes for the final prediction. Results: Despitethe superior performance of VGG19-SVM, with mean ± standard deviation accuracy and sensitivity of 80.68% ± 2.00% and80.86% ± 0.45%, respectively, this model required a long training time. There were also false-negative cases using both theVGGNet-SVM and ResNet-SVM models. AlexNet-SVM was more efficient in terms of running speed and prediction consistency. Our findings also showed good diagnostic ability, with an area under the curve of approximately 0.95. Further investigationalso showed good agreement between our research outcomes and that of the state-of-the-art methods, with specificityranging from 93% to 100%. Conclusions: We believe that the AlexNet-SVM model can be conveniently applied for clinicaluse. Further research could include the implementation of an optimization algorithm for hyperparameter tuning, as well asan appropriate selection of experimental design to improve the efficiency of Pap smear image classification.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0