메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최원영 (국립암센터) 박석연 (국립암센터) 이영주 (국립암센터) 임근영 (국립암센터) 박민정 (국립암센터) 이건국 (국립암센터) 한지연 (국립암센터)
저널정보
대한암학회 Cancer Research and Treatment Cancer Research and Treatment 제53권 제4호
발행연도
2021.10
수록면
1,024 - 1,032 (9page)
DOI
10.4143/crt.2020.1331

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose Capmatinib, an oral MET kinase inhibitor, has demonstrated its efficacy against non?small cell lung cancer (NSCLC) with MET dysregulation. We investigated its clinical impact in advanced NSCLC with MET exon 14 skipping mutation (METex14) or gene amplification. Materials and Methods Patients who participated in the screening of a phase II study of capmatinib for advanced NSCLC were enrolled in this study. MET gene copy number (GCN), protein expression, and METex14 were analyzed and the patients’ clinical outcome were retrospectively reviewed. Results A total of 72 patients were included in this analysis (group A: GCN ≥ 10 or METex14, n=14; group B: others, n=58). Among them, 13 patients were treated with capmatinib (group A, n=8; group B, n=5), and the overall response rate was 50% for group A, and 0% for group B. In all patients, the median overall survival (OS) was 20.2 months (95% confidence interval [CI], 6.9 to not applicable [NA]) for group A, and 11.3 months (95% CI, 8.2 to 20.3) for group B (p=0.457). However, within group A, median OS was 21.5 months (95% CI, 20.8 to NA) for capmatinib-treated, and 7.5 months (95% CI, 3.2 to NA) for capmatinib-untreated patients (p=0.025). Among all capmatinib-untreated patients (n=59), group A showed a trend towards worse OS to group B (median OS, 7.5 months vs. 11.3 months; p=0.123). Conclusion Our data suggest that capmatinib is a new compelling treatment for NSCLC with MET GCN ≥ 10 or METex14 based on the improved survival within these patients.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0