메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
A. Asgharzadeh (Sharif University of Technology) H. Asgharzadeh (University of Tabriz) A. Simchi (Sharif University of Technology)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.27 No.12
발행연도
2021.12
수록면
5,212 - 5,227 (16page)
DOI
10.1007/s12540-020-00950-z

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The hot deformation behavior of coarse-grained (CG), ultrafine-grained (UFG), and oxide dispersion-strengthened (ODS)AA6063 is experimentally recognized though carrying out compression tests at different temperatures (300?450 °C) andstrain rates (0.01?1 s?1). Microstructural studies conducted by TEM and EBSD indicate that dynamic softening mechanismsincluding dynamic recovery and dynamic recrystallization become operative in all the investigated materials depending on theregime of deformation. Moreover, the high temperature flow behavior is considerably influenced by the initial grain structureand the presence of reinforcement particles. The constitutive and artificial neural network (ANN) models were used to studythe high-temperature flow behavior of the investigated alloys. To establish an accurate ANN model, material characteristicsalong with the processing parameters are deliberated. An Arrhenius type constitutive model with a strain-compensation termis employed to predict the flow stress of AA6063 alloys. The relative error associated with the constitutive and ANN modelsin the prediction of the flow stress is obtained 9.56% and 2.02%, respectively. The analysis indicates that the developed ANNmodel is more accurate in the prediction of flow stress with at least 78% less error in comparison to the constitutive model.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0