메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Renlong Xiong (Wuhan Institute of Technology) Yi Liu (Wuhan Institute of Technology) Haitao Si (Sichuan University) Huabei Peng (Sichuan University) Shanling Wang (Sichuan University) Binhan Sun (McGill University) Hanxin Chen (Wuhan Institute of Technology) Hyoung Seop Kim (Pohang University of Science and Technology (POSTECH)) Yuhua Wen (Sichuan University)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.27 No.10
발행연도
2021.10
수록면
3,891 - 3,904 (14page)
DOI
10.1007/s12540-020-00846-y

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In order to improve the work hardening capacity under low stresses and the yield strength of conventional Hadfield steels, theeffects of Si on the microstructure and work hardening behavior of the Fe?17Mn?1.1C?xSi steels under both quasi-statictensile and low load impact are investigated. It is shown that the increase of the Si contents remarkably improves the yieldstrength by 36 MPa per 1 wt% Si in the investigated steel system without significant sacrifice of ductility. The decreasingeffect of Si on the stacking fault energy is strongly affected by carbon, although the variation of carbon content was small. This led to the unexpected similar stacking fault energy between 1Si and 2Si steel. With the increase of the Si contents forthe steels, the critical strain for the onset of mechanical twinning was lowered, which was controlled by the cooperationbetween the stacking fault energy and solid solution strengthening of Si. This resulted in the earlier initiation of mechanicaltwins and an increase in the twin volume fraction. Therefore, the work hardening capacities under both quasi-static tensileand low load impact tests were enhanced. It was also found that the impact deformation decreased as more mechanical twinsabsorbed the impact energy.

목차

등록된 정보가 없습니다.

참고문헌 (49)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0