메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정요한 (고려대학교) 최인철 (고려대학교)
저널정보
한국멀티미디어언어교육학회 멀티미디어 언어교육 멀티미디어 언어교육 제24권 제4호
발행연도
2021.12
수록면
261 - 289 (29page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the advent of Artificial Intelligence (AI) technology utilized in English classrooms, the present case study attempts to explore the strengths and limitations of Automatic Speech Recognition (ASR) supported by AI chatbots. This study selected 20 experimental sentences, which were found to be difficult for a Dialogflow-driven chatbot to recognize in EFL classes. Then, the number of successful speech recognition cases was measured on the basis of the speech uttered by three groups (i.e., native English speakers, Korean-English bilinguals, and EFL students). It showed that the chatbot found it difficult to recognize fast speech phenomena including Tapification and/or Contraction. Moreover, the chatbot recognized bilingual speakers' English pronunciation most accurately, followed by native English speakers and EFL students, which might be attributed to the ASR algorithm based on the spoken English as an International Language (EIL). An additional analysis employing the Praat revealed that this was due to the duration of speech and pauses and that this sophisticated technology did not appear to be fully functional in recognizing unstressed sounds with a low level of duration. Finally, the present study suggests some ideas for designing and utilizing chatbots to achieve a higher level of efficacy in TEFL.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0